Identification of space-time clusters and hotspots in communicable diseases surveillance in Northern Vietnam

Phnom Penh, December 5th 2022
Presented by: Nguyen Hai Tuan, MD., MPH., PhD.
Department of Communicable Disease Control
National Institute of Hygiene and Epidemiology (NIHE)
Presentation outline

- Purposes
- Methods
- Implementing
Purposes
The need to improve Communicable diseases Surveillance system

+ To systematize the monitoring of clusters (occurrence of disease/outbreak signals) based on morbidity, mortality, coordinates, known targeted population

+ Support for early detection of clusters of cases to trigger responses through Emergency Management Steps including confirmation, investigation, and activating responses

+ Identify signal of clinical burden of disease in population
Why spatio-temporal scan statistics?

• In epidemiology spatio-temporal scan statistics is used to detect spatial or space-time disease clusters, and to determine if they are statistically significant

• Applied for similar problems in other fields such as archeology, criminology, demography, ecology, geography or zoology
Why spatio-temporal scan statistics?

- Support the description of the outbreak situation
- Contribute to Investigation Decision
Methods
References of spatio-temporal scan statistics

• Martin Kulldorf: www.satscan.org

• Scan Statistics: Theory and Applications, Séminaire de Probabilité et Statistique, Laboratoire de Mathématiques Paul Painlevé, 5 March, 2014, Lille

• Inkyung Jung 2019: The spatial scan statistic is defined as the maximum of likelihood ratio test statistics over a collection of scanning windows

Input data

• Morbidity/mortality: according to surveillance definition

• Coordinates:
 • Coordinates of administrative regions (commune level) of current patients’ living address
 • Averaged coordinates (calculated by software)
 • Small surveillance area is preferred (cases in the same surveillance area have same coordinates)
 • Decimal coordinates (Lat/Long), geodetic EPSG 4326 - WGS 84 (European Petroleum Survey Group – World Geodetic System)

• Time:
 • Onset date/detection date of cases (day, week, month, year)

• Population size (averaged population or real-time population)
Two-dimensional Scan Statistics

- Windows statistics:
 - Temporal windows
 - Spatial windows
Setting up scanning parameters

• Cluster threshold
 • More or equal to 2 cases for epidemic diseases
 • Endemic diseases:
 – Average (baseline) + > 2SD: data collected from respective surveillance region (e.g.: district, province, country), counting period of 3-5 years excluding outbreak period

• Time aggregation
 – Time aggregation: usually 7 days, 14 days, 21 days
 – Prospective analysis: averaged time is reporting period (7 days for weekly count)

• Spatial window
 – Percentage of population at risk ≤ 50% (default value 50)
 – Maximum radius (km): meaningful distance for surveillance, investigation (block, hamlet, village) several to dozen of km (20 km).
Determine scanning parameters

• Temporal window
 – Retrospective scan: maximal temporal window ≥ Time aggregation
 – Prospective scan: maximal temporal window = reporting period (7 days for weekly count); if choose 14 days, the Time aggregation (mean, SD) should be 14 days.

• Monte Carlo Replication
 – Select value 0, 9, 999, 9999, or any number ending with 999
 – Convenient p-value %, °/oo,
Simple snapshot of purely spatial dimension

Surface S is divided into m surfaces of equal size.

- E.g. with $R = 2$ km, the S is divided into 112 circles of 2 km.
- The m changes according to R varying 0 to designed size.
How potential purely spatial clusters are identified?

- When the R changes and the center of circle changes will create unlimited number of windows.
- Within each window there are neighboring points \rightarrow such a window will be a potential cluster.
Potential purely spatial clusters

- Example: a small sample of windows in purely spatial scan statistics.
- At each location, the R of the circle varies from 0 to a designed size (km).
Potential spatio-temporal clusters

- Number and size of cylinder vary according to spatial window \(t \) and temporal window \(R \)
- Cases observed within a cylinder is potential cases of a cluster
Monte Carlo simulation

- Number of replication: 0, 9, 999, 9999, ...

Real dataset

9 simulated datasets
Computing and comparing the maximum likelihoods

The assumption that the case is equally distributed in time and in space:

+ Sliding windows with varying size from 0 to a designed sized.

+ Accumulated number of cases inside and outside the windows.

+ Compute and compare likelihoods. The H0 inside = outside, H1 inside != outside.

+ Monte Carlo replication (Monte Carlo Rank Test for likelihoods).
Steps of space-time analysis for surveillance

• Step 1. Preparing data table
• Step 2. Setting up input data for software/tools
• Step 3. Setting up statistical methods, parameters, output display format
• Step 4. Run program and verify the output
• Step 5. Presentation, visualization and interpretation of the results
Implementing
Implementing activities

• Training provincial CDC staffs on application of space-time analysis in communicable diseases surveillance
 + Provide participants the key concepts and knowledge to conduct scan statistic applied in routine communicable diseases surveillance and responses
 + Hand-on practices to identify significant clusters and communicable diseases outbreaks in community.

• Integrate approach for communicable disease surveillance in 4 selected provinces in the Northern Vietnam
Implementing activities

• Organize and support data collation at provincial CDCs
 + Number of cases/Number of death
 + Date of onset/date of event
 + Coordinates at commune/ward level
 + Population size of commune/ward level from District Statistic Office
 + Determinant factors
Implementing activities

- Public health surveillance
 - Highly pathogenic avian influenza (HPAI) (A/H5N1, A/H5N6, A/H7N9, ...)
 - Dengue Haemorrhagic Fever
 - Hand-Foot-Mouth Disease
 - Coronavirus disease 2019 (COVID-19)
 - Seasonal Influenza Diseases (A, B)
 - Measles, rabies

- One year pilot

- Implementing provinces: 4 provinces
Implementing activities

• Preparing input data from multiple data sources:
 + Event-based surveillance
 + Indicator based surveillance (Hospital based surveillance, CHS surveillance, International Quarantine Network: HPAI, Dengue, Measle, Rabies, ...)
 + Sentinel surveillance (COVID-19/ILI, HFM, Plague Surveillance and Control)
 + Laboratory surveillance

• Assist weekly analysis to identify potential clusters
 + Prospective analysis to identify active clusters
 + Report significant clusters/event

• Assist CDC staff for cluster investigation and outbreak confirmation
 + Call to request more information (what, when, where, how)
 + Conduct confirmation process (SOPs for Public Health Event/outbreak confirmation)
Implementing activities

• Reporting clusters to stakeholders
 + Reporting to NIHE
 + Reporting to Provincial Department of Health
 + Reporting to General Department of Preventive Medicine
 + Reporting to Regional Animal Health Office

• Activating RRT for responses
 + Laboratory investigation: collection of sample and laboratory diagnosis
 + Activate response functions and enhance monitoring & reporting