Plague sentinel site surveillance system and opportunities for future studies related to rodents in Vietnam

Nguyen T. Chung, Ph.D., M.P.H., MD
Department of Infectious disease control and prevention
National Institute of Hygiene and Epidemiology
Content

➢ Background
➢ Goals and Objectives
➢ Surveillance components
➢ Results 2018
➢ Active control of vectors and hosts
➢ Proposals for future studies related to rodents
History of Plague in Vietnam

1898: first case from Hong Kong via ships.

Five periods:

1. *Imported and transmission to community: 1898-1922*
2. *Quiet and endemic: 1923-1960*
3. *Re-emerge in a large scale: 1961-1990*
5. *Under control: 2003 - now*
Goal of the surveillance

Enhance the capacity in plague control and prevention by implementing the surveillance system to actively detect human cases of plague transmitted into Vietnam via points of entry and actively monitor rodents and flea activities in areas bordering China and Laos.
Objectives

(1) To early detection of plague human cases and in rodents

(2) To identify and monitor rodent and flea species in surveillance sites
Contents

➢ Goals and Objectives
➢ Surveillance components
➢ Results 2018
➢ Active control of vectors and hosts
➢ Proposals for future studies related to rodents
Components

1. Human surveillance

Using the WHO case definition for plague:

https://apps.who.int/iris/bitstream/handle/10665/341851/WER9624-eng-fre.pdf
<table>
<thead>
<tr>
<th>Plague case — Cas de peste</th>
<th>Suspected — Suspect</th>
<th>Probable — Présumé</th>
<th>Confirmed — confirmé</th>
<th>Not-a-case — Non cas</th>
</tr>
</thead>
</table>

Clinical presentation suggestive of plague
AND
Epidemiological context suggesting possible exposure to plague
AND
- Exposure to infected humans or animals, or residence in or travel to a known endemic focus within 10 days prior to onset of the disease
- Contexte épidémiologique évocateur de peste
AND
- Exposition à des personnes ou des animaux infectés, résidence ou retour d’un foyer endémique connu dans les 10 jours précédant le début de la maladie

Tests — Tests
NONE — AUCUN

AND ONE of the following:
- F1 antigen positive in bubo aspirate, sputum, blood, or post-mortem tissues by F1RDT or DFA
- Single anti-F1 serology positive without evidence of previous *Y. pestis* infection or vaccination
- Direct microscopy in a clinical sample, positive for gram-negative coccobacilli that display bipolar staining with Wayson or Giemsa stain

AND at least ONE of the following criteria:
- Isolation of *Y. pestis* from a clinical sample — must have appropriate colony morphology and be identified as *Y. pestis* based by at least two of the following:
 - Phage lysis at 20-25°C
 - Biochemical profile
 - F1 antigen detection
 - Serologic or a 4-fold difference in anti-F1 antibody titer in paired serum samples drawn at least 2 weeks apart
- *Y. pestis* DNA positive by species-specific PCR on either clinical sample or culture according to standard practice

AND either:
- At least TWO of the following laboratory tests (F1RDT, DFA against F1 antigen, direct microscopy, convalescent serology, culture, PCR) are conducted AND they are negative
- When no confirmatory tests can be performed, TWO negative F1RDT on two clinical specimens collected with 24 hours interval

ET UN des tests suivants positif:
- Détection de l’antigène F1 par TDR F1 ou DFA dans un prélèvement de bubon, de sang, un crachat ou un prélèvement de tissu post-mortem
- Une sérologie anti-F1 unique sans signe d’infection antérieure par *Y. pestis* ni de vaccination
- Examen microscopique d’un échantillon clinique mettant en évidence des coccobacilles à Gram negatif, bipolaires après une coloration de Wayson ou de Giemsa

ET au moins UN des tests suivants positif:
- Identification de *Y. pestis* dans un échantillon clinique sur la base de la morphologie de la colonie et au moins DEUX des tests suivants:
 - Lyse des cultures à 20-25°C par un phage spécifique
 - Profil biochimique de *Y. pestis*
 - Détection de l’antigène F1
- Séroconversion ou multiplication par 4 du titre d’anticorps anti-F1 dans des échantillons de sérum appariés prélevés 2 semaines d’intervalle
- Détection d’ADN de *Y. pestis* par PCR dans un échantillon clinique ou sur culture, selon la technique conventionnelle

ET soit:
- Au moins DEUX des tests suivants sont effectués ET sont négatifs : TDR F1, détection de l’antigène F1 par DFA, examen microscopique, sérologie de convalescence, culture, PCR
- Lorsqu’aucun test de confirmation n’a pu être effectué, DEUX TDR F1 sont négatifs sur deux échantillons cliniques prélevés à 24 heures d’intervalle

DFA: direct fluorescence assay; DNA: deoxyribonucleic acid; F1RDT: rapid diagnostic test based on F1 antigen; PCR: polymerase chain reaction. — DFA: examen par immunofluorescence directe; TDR F: test de diagnostic rapide basé sur l’antigène F1; PCR: de l’anglais «polymerase chain reaction».
Components

1. Human surveillance

Location:

➢ 11 Points of Entry (PoE) bordering China, Laos

Method:

➢ Screening at PoE by body temperature and health declaration to detect suspected cases.

➢ Reports from hospitals

If a suspected case detected, specimens will be taken for testing to confirm.
Components

2. Rodent and flea surveillance

➢ Location: 11 PoE areas

➢ Method: Data on domestic fleas and rodents were obtained by using traps monthly in accordance with the WHO guidelines
 ▪ Classification of rodents and fleas
 ▪ Take rodent samples (livers/spleen/kidney) for testing

➢ Take flea sample for PCR and for testing for chemical sensitivity or resistance.
Components

2. Rodent and Flea surveillance

➢ Rodent index: number of rodents/#traps per time.
➢ Flea index: average number of fleas/a rodent, by month, by sites
➢ Review of indexes: high, average or low
Components

3. Enhance capacity

➢ Provide one training course to update the surveillance guideline annually.

➢ Provide lab training for Wayson microscopic staining procedure to early detect Yersinia pestis for International Health Quarantine Centers

➢ Workshop for surveillance results
Contents

➢ Goals and Objectives
➢ Surveillance components
➢ Results 2018
➢ Active control of vectors and hosts
➢ Proposals for future studies related to rodents
<table>
<thead>
<tr>
<th>TT</th>
<th>Sites</th>
<th>PoE</th>
<th>Rodents</th>
<th>Fleas</th>
<th>Flea index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lào Cai</td>
<td>Lào Cai</td>
<td>56</td>
<td>33</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kim Thành</td>
<td>48</td>
<td>17</td>
<td>0.35</td>
</tr>
<tr>
<td>2</td>
<td>Lạng Sơn</td>
<td>Hữu Nghị</td>
<td>57</td>
<td>4</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tân Thanh</td>
<td>51</td>
<td>3</td>
<td>0.06</td>
</tr>
<tr>
<td>3</td>
<td>Hải Phòng</td>
<td>Cảng HP</td>
<td>31</td>
<td>42</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>Quảng Ninh</td>
<td>Móng Cái</td>
<td>11</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cảng Hòn Gai</td>
<td>10</td>
<td>3</td>
<td>0.30</td>
</tr>
<tr>
<td>5</td>
<td>Hà Nội</td>
<td>Nội Bài</td>
<td>44</td>
<td>19</td>
<td>0.43</td>
</tr>
<tr>
<td>6</td>
<td>Hà Tĩnh</td>
<td>Cảng Vũng Áng</td>
<td>25</td>
<td>2</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CK Cầu Treo</td>
<td>22</td>
<td>6</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Tổng số</td>
<td></td>
<td>355</td>
<td>129</td>
<td>0.36</td>
</tr>
<tr>
<td>TT</td>
<td>Trung tâm</td>
<td>CK</td>
<td>T3</td>
<td>T4</td>
<td>T5</td>
</tr>
<tr>
<td>----</td>
<td>--------------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>Lào Cai</td>
<td>Lào Cai</td>
<td>0.50</td>
<td>2.50</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kim Thành</td>
<td>0.00</td>
<td>0.75</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>Lạng Sơn</td>
<td>Hữu Nghị</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tân Thanh</td>
<td>0.10</td>
<td>0.00</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>Hải Phòng</td>
<td>Cảng HP</td>
<td>0.20</td>
<td>0.50</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Móng Cái</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cảng Hòn Gai</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>Quảng Ninh</td>
<td>Nội Bài</td>
<td>0.80</td>
<td>0.00</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cảng Vũng Áng</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>Hà Nội</td>
<td>CK Cầu Treo</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.16</td>
<td>0.38</td>
<td>0.37</td>
</tr>
</tbody>
</table>
Chemical sensitivity, 2018

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Hà Nội</th>
<th>Hải Phòng</th>
<th>Lạng Sơn</th>
<th>Hà Tĩnh</th>
<th>Lào Cai</th>
<th>Quảng Ninh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malathion 5%</td>
<td>65.2</td>
<td>60.8</td>
<td>67.3</td>
<td>67.3</td>
<td>66.7</td>
<td>62.3</td>
</tr>
<tr>
<td>Deltamethrin 0.05%</td>
<td>79.6</td>
<td>70.3</td>
<td>82.3</td>
<td>82.5</td>
<td>68.7</td>
<td>75.3</td>
</tr>
<tr>
<td>Permethrin 0.75%</td>
<td>93.0</td>
<td>86.7</td>
<td>92.3</td>
<td>91.7</td>
<td>89.7</td>
<td>90.3</td>
</tr>
</tbody>
</table>
Contents

➢ Goals and Objectives
➢ Surveillance components
➢ Results 2018
➢ Active control of vectors and hosts
➢ Proposals for future studies related to rodents
Flea controls
RODENT CONTROLS

• Permethrin 50EC; 0,2gr/m²
• Baits: Klerat and Storm
Rodent controls
Rodent controls
RODENT AND FLEA SURVEILLANCE

Kim Thanh PoE, Lao Cai Province
RODENT AND FLEA SURVEILLANCE

Tan Thanh PoE – Lạng Sơn Province
RODENT AND FLEA SURVEILLANCE

Hữu Nghị - Lạng Sơn
RODENT AND FLEA SURVEILLANCE

Hai Phong Harbour
Overview

➢ Goals and Objectives
➢ Surveillance components
➢ Results 2018
➢ Active control of vectors and hosts
➢ Proposals for future studies related to rodents
Research proposals: questions on what diseases?

Rodents-borne Diseases: Plague, Leptospiroa, typhus, viral hemorrhagic fever, hantavirus, parasites....

Six Dangerous Diseases Spread by Rats and Rodents

While the pitter-patter of little feet can be a welcome sound in many a household, one can make the argument that the happiness scale is directly correlated with the type of feet attached to that sound. Namely, the species. We're talking rodents people!

Millions of homes in the United States have unwelcomed guests in the form of rats and other...
1. HANTAVIRUS

Most commonly found in the white-footed mouse, cotton rat and rice rat, the Hantavirus is a potentially life-threatening disease that currently has no specific treatment, cure or vaccine. Symptoms include: fever, fatigue, muscle aches (generally in hips, backs and thighs) and may include, diarrhea abdominal pain, nausea and vomiting.

In conclusion, we found that SEOV is circulating in northern Vietnam, in both humans and rodents; however, the consequence of SEOV infection as a cause of HFRS remains unclear. The Vietnamese SEOV is phylogenetically distinct from SEOVs originating in other regions, suggesting that Southeast Asian SEOVs form a separate cluster. As the existence of novel hantaviruses was also suggested, additional epidemiological and epizootiological studies are required to clarify the variation in, and distribution of, hantaviruses in East and Southeast Asia.
2. LYMPHOCYTIC CHORIOMENINGITIS VIRUS (LCMV)

Lymphocytic choriomeningitis, or LCM, is a rodent-borne viral infectious disease caused by lymphocytic choriomeningitis virus (LCMV), a member of the family Arenaviridae, that was initially isolated in 1933.

Very little seroreactivity was observed to LCMV in either rodents (1/275, 0.4%) or humans (2/245, 0.8%). Molecular screening of rodent liver tissues using consensus primers for flaviviruses did not yield any amplicons, whereas molecular screening of rodent lung tissues for hantavirus yielded one hantavirus sequence (SEOV). In summary, these results indicate low to moderate levels of endemic hantavirus circulation, possible circulation of a flavivirus in rodent reservoirs, and the first available data on human exposures to parechoviruses in Vietnam. Although the current evidence suggests only limited exposure of humans to known rodent-borne diseases, further research is warranted to assess public health implications of the rodent trade.
3. **PLAGUE**

95 results

- **Plague in Vietnam.**
 - [No authors listed]
 - Cite: Lancet. 1968 Apr 13;1(7546):799-800.
 - PMID: 4171138 No abstract available.

- **Plague in Vietnam.**
 - [No authors listed]
 - PMID: 20791484 Free PMC article. No abstract available.

- **Plague in Vietnam 1965-1966.**
 - Marshall JD Jr, Joy RJ, Al NV, Quy DV, Stockard JL, Gibson FL.
 - PMID: 6081384 No abstract available.

- [The plague in Vietnam: history and inventory of collected fleas (insecta, Siphonaptera) in the inhabited zones].
 - Beaucournu JC, Sountsova NI, Ly TV, Sountsov VV.
Future study for Plague host/vector

Data need to collect:

➢ Temperature,
➢ duration of sunshine,
➢ rainfall and humidity
➢ Mapping areas

were recorded as monthly averages by local meteorological stations.
4. **SALMONELLA**

Salmonella are bacteria that can live in the intestinal tract of many different animals. *Salmonella* can make both people and animals sick.

- Many animals and pets can carry these germs, even if they look clean and healthy. Animals that can spread *Salmonella* to people include
 - Poultry (chicks, chickens, ducklings, ducks, geese, and turkeys)
 - Other birds (wild birds)
 - Reptiles (turtles, lizards, and snakes)
 - Amphibians (frogs and toads)
 - **Rodents (mice, rats, hamsters, and guinea pigs)**
 - Other small mammals (hedgehogs)
 - Farm animals (goats, calves, cows, sheep, and pigs)

Symptoms: chills, fever, abdominal cramps, nausea, vomiting, and diarrhea.
5. TULAREMIA

Caused by the bacterium Francisella tularensis, Tularemia is often found in rodents, rabbits and hares who are especially prone. Tularemia is most commonly transferred to humans by an infected tick or deer fly bite, or by handling of an animal that is infected. Reported in almost every state in America, Tularemia can be life a threatening illness, though most cases can be treated with the use of antibiotics.
The Hendra virus and Nipah virus

Recently, 35 febrile human cases in two provinces in China were investigated and confirmed due to other henipavirus infection called Langya henipavirus (LayV) [1].

LayV is most phylogenically related to Mojiang henipavirus which were detected in Southern China [2].

Natural host: Shews
7. Leptospira

A high seropositive proportion with 17 different serovars was detected in all studied animals, which indicates the diversity of Leptospira in Vietnam.

14% seropositive in rats

This study showed a high prevalence of Leptospira circulating in both domestic and wild animals, increasing the risk of pathogenic leptospires transmission to humans in Vietnam.
Research proposals

Geospatial approaches for monitor hosts and human cases

Spatial epidemiology + vulnerability areas + disease ecology

Figure 1: Location of the seven CERoPath sampling sites in South-East Asia
Concept note 1:

Seroprevalence study of LayV virus (henipavirus) amongst dog, goat, rodent and febrile human in the northern provinces of Vietnam at PoE areas bordering with China
Concept note 2:

Detection of *Leptospira* in hosts and environment in the northern provinces of Vietnam bordering with China and Laos
• .\.\.\.\Desktop\a4diwpoFAjZqSoEgY8TPyK_2022_12_04_16_21_41.kml

(source: Kobotoolbox)
Thank you!