

Seen from above: how satellite technology can fill gaps in mosquito biology

Boyer S, Maquart PO, Jego S, Marcombe S, Revillion C, Hoeun S, Girond F, Herbreteau V

Medical and Veterinary Entomology Unit Institut Pasteur du Cambodge

GeoOneHealth 2022 – South East Asia Symposium on Geospatial Approaches in One Health Studies 5 December 2022, Phnom Penh, Cambodia

Context

- Dengue is endemic in Cambodia (WHO)
- The 4 DENV serotypes circulate (Vong et al. 2010)
- Estimated 14,000 cases per year (WHO)
- Regular outbreaks in Cambodia
- Aedes aegypti & Aedes albopictus
- Main DENV vectors
- Vector control management :
 - Temephos (Abate) as larvicide
 - Deltamethrin and Permethrin as adulticide

Context

- Dengue is endemic in Cambodia (WHO)
- The 4 DENV serotypes circulate (Vong et al. 2010)
- Estimated 14,000 cases per year (WHO)
- Regular outbreaks in Cambodia
- Aedes aegypti & Aedes albopictus
- Main DENV vectors
- Vector control management :
 - Temephos (Abate) as larvicide
 - Deltamethrin and Permethrin as adulticide

Resistance of Aedes aegypti (Diptera: Culicidae) Populations to Deltamethrin, Permethrin, and Temephos in Cambodia	2018 APPH Reprints and permissions: sagepub.com/journals/Termissions.aw DOI: 10.1777/1010539715753876 journals.sagepub.com/home/aph SAGE
Sébastien Boyer, PhD ¹ , Sergio Lopes, Msc ² , Didot Prasetyo, PhD ³ , John Hustedt, Msc ² , Ay Sao Sarady, Msc ² , Dyna Doum, Msc ² , Sony ⁵ Borin Peng, Msc ¹ , Sam Bunleng, Msc ⁴ , Rithea L Didier Fontenille, PhD ¹ , and Jeffrey Hii, PhD ⁵	Yean, Msc ¹ , .eang, PhD⁴,
F	Published in 2018
Boyer et al. Parasites & Vectors (2022) 15:44 https://doi.org/10.1186/s13071-022-05156-3	Parasites & Vectors
RESEARCH	Open Access
Monitoring insecticide resistance and larval Aedes aegypti (Diptera	e of adult 🛛 🕍 a: Culicidae)

Sebastien Boyer^{1,2*}, Pierre-Olivier Maquart¹, Kalyan Chhuoy¹, Kimhuor Suor¹, Moeun Chhum¹, Kimly Heng¹, Sokkeang Leng¹, Didier Fontenille^{1,3} and Sebastien Marcombe⁴

Published in 2022

Asia Pacific Journal of Public Health

ECOnomic development, **ECO**system **MO**difications, and emerging infectious diseases **R**isk **E**valuation

Evaluation of integrated vector method control management in schools

Do vector control in school lead to a community decrease of DENV transmission ?

ECOnomic development, ECOsystem MOdifications, and emerging infectious diseases Risk Evaluation

Evaluation of integrated vector method control management in schools Passive monitoring of dengue-like syndroms in Health centers

Do vector control in school lead to a community decrease of DENV transmission ?

> Serological monitoring for dengue with salivary test in school

Epidemiological Approach

Cluster Randomized Controlled Trial Study Kampong Cham & Tbong Khmum Provinces

Epidemiological Approach

Cluster Randomized Controlled Trial Study Kampong Cham & Tbong Khmum Provinces

- 24 clusters in 5 districts
 - 71 villages (26 in urban/peri-urban)
 - 78,741 population
 - ~15,000 children aged 5-15 years old
- One cluster
 - <u>One SCHOOL</u> with primary grade
 - Several VILLAGES (300+ children aged 5-15 y.o.) surrounding and depending on that school

Entomological sampling

Sampling

- 24 hour per schools
- BG & CDC LT
- 4 times / year
- 3 years

Main entomo results

Mosquito species

- ~ 60,000 mosquitoes
- 12 genus
- > 67 species

Mosquito species

Aedeomyia catasticta

Aedes aegypti Aedes albopictus Aedes imprimens Aedes lineatopennis Aedes amalyensis Aedes mediolineatus Aedes vexans Aedes w-alba Aedes sp

Armigeres magnus Armigeres subalbatus Armigeres theobaldi Armigeres sp

Coquillettidia crassipes Coquillettidia ochracea Coquillettidia sp Anopheles aconitus Anopheles annularis Anopheles agyropus Anopheles barbirostris.g Anopheles barbumbrosus Anopheles campestris Anopheles crawfordi Anopheles hodgkini Anopheles indefinitus Anopheles nigerrimus Anopheles nitidus Anopheles peditaeniatus Anopheles phillippinensis Anopheles separatus Anopheles sinensis Anopheles subpictus Anopheles tessellatus Anopheles vagus Anopheles sp

Culex bitaeniorhynchus Culex brevipalpis Culex fuscocephala Culex gelidus Culex hutchinsoni Culex infantulus / minutissimus Culex malayi Culex nigropunctatus Culex quinquefasciatus Culex sinensis Culex sitiens Culex tritaeniorhynchus Culex vishnui.g Culex whitmorei Culex wilfedi.g Culex sp

Ochlerotatus vigilax

Tripteroides sp

- ~ 60,000 mosquitoes
- 12 genus
- > 67 species

Lutzia halifaxii Lutzia vorax Lutzia sp Mansonia annulifera Mansonia indiana Mansonia uniformis Mansonia sp

Lutzia fuscana

Mimomyia aurea Mimomyia elegans Mimomyia hybrida Mimomyia luzonensis Mimomyia sp

Uranotaenia bimaculiala Uranotaenia lateralis/subnormalis Uranotaenia longirostris Uranotaenia micans Uranotaenia nivipleura Uranotaenia rampae

Mosquito species ~ 60,000 mosquitoes **HIGH BIODIVERSITY !** 12 genus ۲ > 67 species Aedeomyia catasticta Anopheles aconitus Culex bitaeniorhynchus Lutzia fuscana Lutzia balifavii Anonholos annularis Culoy browinglaid Aedes aegyp 12 potential **JEV** vector species 39,900 mosquitoes (68%) Aedes albop Aedes impri 10 potential **malaria** vector species 9,494 mosquitoes (16%) Aedes lineat ulifera 7 potential **RVFV** vector species 10,441 mosquitoes (18%) Aedes amal ana 5 potential **ZIKV** vector species mosquitoes (14%) 8,349 Aedes medi brmis Aedes vexar 4 potential **WNV** vector species 9,123 mosquitoes (16%) Aedes w-alb 4 potential **CHIKV** vector species mosquitoes (4%) 2,208 Aedes sp ea 3 potential **DENV** vector species mosquitoes (4%) 2,123 gans brida Armigeres m Armigeres subalbatus iviimomyla luzonensis PLOS ONE Armigeres theobaldi Mimomyia sp Armigeres sp RESEARCH ARTICLE Uranotaenia bimaculiala High diversity of mosquito vectors in Coquillettidia crassipes Uranotaenia lateralis/subnormalis Cambodian primary schools and Coquillettidia ochracea Uranotaenia longirostris consequences for arbovirus transmission Coquillettidia sp Uranotaenia micans Sebastien Boyer^{1*}, Sebastien Marcombe², Sony Yean¹, Didier Fontenille¹ 1 Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Boulevard Monivong, Phnom Uranotaenia nivipleura Penh, Cambodia, 2 Medical Entomology Unit, Ministry of Health, Institut Pasteur du Laos, Vientiane, Lao Uranotaenia rampae

New Research objective

- Many mosquito species
- High proportion of vector species
- Randomized schools (=randomized environment)

- Many mosquito species
- High proportion of vector species
- Randomized schools (=randomized environment)

But an absence of spatial and temporal analysis

• How to link the distribution of mosquito species to environmental indicators ?

New Research objective

- Many mosquito species
- High proportion of vector species
- Randomized schools (=randomized environment)

But an absence of spatial and temporal analysis

- How to link the distribution of mosquito species to environmental indicators ?
- -> Entomological data
- -> Spatial data
- -> Temporal / environmental data
- -> Meteorological data

Entomological data

Entomological data

24 schools

Kampong Cham province Tbong Khmum province aleatory chosen schools all schools separated by at least 5 kms

12 samplings

every 3 months during 3 years

Institut Pas

Entomological data

24 schools

Kampong Cham province Tbong Khmum province aleatory chosen schools all schools separated by at least 5 kms

12 samplings

every 3 months during 3 years

6 school & demographic parameters

- 1. Presence of pagoda
- 2. Number of trap
- 3. Number of children in school
- 4. Number of children in the cluster
- 5. School area
- 6. Village population

Spatial data : OpenStreetMap

Spatial data : OpenStreetMap

- Mapping : 500m radius
- Calculating length, areas, perimeters

- **Spatial indicators**
- 1. Number of houses
- 2. Roads
- 3. Forest
- 4. Road network
- 5. Water area
- 6. Wetland
- 7. Rivers

• • •

- Mapping : 500m radius
- Calculating length, areas, perimeters

Spatial data : OpenStreetMap

Spatial indicators

- 1. Number of houses
- Roads 2.
- 3. Forest
- Road network 4.
- 5. Water area
- Wetland 6.
- 7. Rivers

• • •

- Mapping : 500m radius ٠
- Calculating length, areas, perimeters ٠
- Creation of a mask ٠

Mask creation

- ✓ Grey : school buffer are (500m radius)
- ✓ Blue : buildings, houses
- Red : permanent water areas

Sentinel-2

Sentinel-2 satelites

- Earth observation satellites (Copernicus program)
- Developed by European Space Agency
- 2 satellites in the same orbit
- 1 satellite image of the area / 5 days
- High resolution multi-spectral images: passive optical sensors

Sentinel-2 satelites

- Earth observation satellites (Copernicus program)
- Developed by European Space Agency
- 2 satellites in the same orbit
- 1 satellite image of the area / 5 days
- High resolution multi-spectral images: passive optical sensors

From satellite image to database

- 13 spectral bands
- from visible to invisible infrared
- 10,980 x 10,980 pixels

Different profiles for different spectral signatures

Different profiles for different spectral signatures

Environmental indices

Vegetation Index (NDVI)

sensitive to the vigour and quantity of vegetation

≠ between read and near infrared bands

Water index (NDWI)

Gao : changes related to leaf water content ≠ between near-infrared and short-wave infrared bands

Mc Feeters : water content related changes in water bodies (pond, pool, flood) ≠ between green and near infrared bands

NDVI NDWI Gao **NDWI Mc Feeters**

• For each NDVI and NDWI :

✓ Creation and application of a mask on the buffer zones

✓ Extraction of environnemental indices per image and for each buffer zone

✓ Study on the quality of satellite images

✓ Creation of prediction models

Mask creation

- ✓ Grey : school buffer are (500m radius)
- ✓ Blue : buildings, houses
- ✓ **Red** : permanent water areas

Mask creation

- ✓ Grey : school buffer are (500m radius)
- Blue : buildings, houses
- Red : permanent water areas

- Buffer zone with mask (NDVI) :
 - ✓ Removal of buildings
 - ✓ Removal of permanent water areas

Institut Pasteur du Cambodge

Temporal / Environmental data

Buffer area (500m radius)

Quality of satellite images per school :

 $\checkmark \le 75\%$ missing values

✓ Pre-processing problems: deletion of satellite images for several dates

✓ 95% correlation between NDVI and Mc Feeters's NDWI

Date of observation of satellite images

Model calibration

• Analysis on all schools with 5 explanatory variables

Model calibration

• Analysis on all schools with 5 explanatory variables

• 3 prediction models

GLM with stepwise method Random forests based on conditional inference trees SVM (Support Vector Machine) with linear, polynomial and Gaussian kernel

Model calibration

• Analysis on all schools with 5 explanatory variables

• 3 prediction models

GLM with stepwise method Random forests based on conditional inference trees SVM (Support Vector Machine) with linear, polynomial and Gaussian kernel

- **Deep learning** model on ³/₄ of the initial dataset
- **Cross-validation** K-fold repeated 5 times (K = 10)
- Determination of optimal parameters (train function of R caret module)

Time average NDVI (observed and predicted)

Time average Gao NDWI (observed and predicted)

Model calibration

• Analysis on all schools with 5 explanatory variables

• 3 prediction models

GLM with stepwise method Random forests based on conditional inference trees SVM (Support Vector Machine) with linear, polynomial and Gaussian kernel

- **Deep learning** model on ³/₄ of the initial dataset
- **Cross-validation** K-fold repeated 5 times (K = 10)
- Determination of optimal parameters (train function of R caret module)

⇒ Best model : Random forests on NDVI and Gao NDWI (lowest RMSE)

Model

- 44 factors:
 - ✓ 18 environmental indicators (Day 0, 5, 10, 15, 20, 30, 40, 50, 60 for NDVI & Gao NDWI)
 - ✓ **13 spatial indicators** (number of houses, rivers, roads ...)
 - ✓ 6 school & demographic parameters (pagoda, nb of children, population...)
 - ✓ 7 meteorological data (temperature, precipitation, humidity...)

- 7 variables for Shannon index
- 6 variables for *Ae. aegypti*
- 5 variables for *Ae. albopictus*

Example of **Biodiversity** with Shannon index

- NDWI (day 5) *
- Minimal temperature **
- Total precipitation *
- Relative humidy *
- Treatment ***
- Year 1/Year 2 *
- Relative Humidity* Year 1/Year2 ***

environmental indicator (satellite)
meteorological data
automatic inclusion (IVM + Year)

Example of **Biodiversity** with Shannon index

- NDWI (day 5) *
- Minimal temperature **
- Total precipitation *
- Relative humidy *
- Treatment ***
- Year 1/Year 2 *
- Relative Humidity* Year 1/Year2 ***

1 environmental indicator (satellite)

3 meteorological data

2 automatic inclusion (IVM + Year)

Example with *Aedes albopictus*

- NDVI (day 20) ***
- Forest perimeter **
- Number of school children ***
- Wind speed *
- Year 1/Year 2 ***

- 1 environmental indicator (satellite)
- 1 spatial indicator
- 1 school & demographic parameter
- 1 meteorological data
- 1 automatic inclusion (IVM + Year)

Example of **Biodiversity** with Shannon index

- NDWI (day 5) *
- Minimal temperature **
- Total precipitation *
- Relative humidy *
- Treatment ***
- Year 1/Year 2 *
- Relative Humidity* Year 1/Year2 ***

1 environmental indicator (satellite)

3 meteorological data

2 automatic inclusion (IVM + Year)

Example with *Aedes albopictus*

- NDVI (day 20) ***
- Forest perimeter **
- Number of school children ***
- Wind speed *
- Year 1/Year 2 ***

Example with Aedes aegypti

- Presence of small river ***
- Flooding area *
- Relative humidity **
- Max temperature ***
- Month of collect ***
- Treatment **

1 environmental indicator (satellite)

- 1 spatial indicator
- 1 school & demographic parameter
- 1 meteorological data
- 1 automatic inclusion (IVM + Year)

2 spatial indicators

2 meteorological data

2 automatic inclusion (IVM + Year)

Species name	Ν	N schools	N missions	Factors
Anopheles indefinitus	7894	24	11	treatment NDVI.90
Culex quinquefasciatus	5693	24	12	perim.zone.inon pop_tot
Culex brevipalpis	2329	24	12	pluvio.cum
Aedes aegypti	1571	24	12	Stream (small river)
Anopheles peditaeniatus	1257	24	11	treatment temp.moy MNDWI.54
Anopheles vagus	1164	24	8	NDVI.46 treatment:mois.an
Culex gelidus	1089	24	12	nb_enf
Culex bitaeniorhynchus	695	24	12	NDVI.2 MNDWI.34
Culex fuscocephala	660	24	10	temp.moy
Aedes albopictus	551	24	12	nb_enf
Armigeres subalbatus	527	23	12	NDWIGAO.58
Anopheles sinensis	265	22	11	NDVI.29
Aedeomyia catasticta	256	20	12	MNDWI.90
Culex nigropunctatus	139	20	11	NDVI.33
Coquillettidia crassipes	109	20	11	pluvio.cum
Anopheles barbumbrosus	88	14	5	temp.moy
Mansonia annulifera	79	14	9	perim.eau.tot pop_tot
Anopheles nitidus	62	14	7	MNDWI.72
Uranotaenia rampae	54	16	9	perim.eau.tot

	Species name	N	N schools	N missions	Factors
Results	Anopheles indefinitus	7894	24	11	treatment NDVI.90
	Culex quinquefasciatus	5693	24	12	perim.zone.inon pop_tot
	Culex brevipalpis	2329	24	12	pluvio.cum
	Aedes aegypti	1571	24	12	Stream (small river)
	Anopheles peditaeniatus	1257	24	11	treatment temp.moy MNDWI.54
Understudied species	Anopheles vagus	1164	24	8	NDVI.46 treatment:mois.an
	Culex gelidus	1089	24	12	nb_enf
	Culex bitaeniorhynchus	695	24	12	NDVI.2 MNDWI.34
	Culex fuscocephala	660	24	10	temp.moy
	Aedes albopictus	551	24	12	nb_enf
	Armigeres subalbatus	527	23	12	NDWIGAO.58
	Anopheles sinensis	265	22	11	NDVI.29
	Aedeomyia catasticta	256	20	12	MNDWI.90
	Culex nigropunctatus	139	20	11	NDVI.33
	Coquillettidia crassipes	109	20	11	pluvio.cum
	Anopheles barbumbrosus	88	14	5	temp.moy
	Mansonia annulifera	79	14	9	perim.eau.tot pop_tot
	Anopheles nitidus	62	14	7	MNDWI.72
	Uranotaenia rampae	54	16	9	perim.eau.tot

	Species name		Ν	N schools	N missions	Factors
Results	Anopheles indefinitus		7894	24	11	treatment NDVI.90
	Culex quinquefasciatus		5693	24	12	perim.zone.inon pop_tot
	Culex brevipalpis	2329	24	12	pluvio.cum	
	Aedes aegypti		1571	24	12	Stream (small river)
Understudied species	Anopheles peditaeniatus		1257	24	11	treatment temp.moy MNDWI.54
	Anopheles vagus	1164	24	8	NDVI.46 treatment:mois.an	
	Culex gelidus		1089	24	12	nb_enf
	Culex bitaeniorhynchus		695	24	12	NDVI.2 MNDWI.34
	Culex fuscocephala		660	24	10	temp.moy
	Aedes albopictus		551	24	12	nb_enf
	Armigeres subalbatus		527	23	12	NDWIGAO.58
	Anopheles sinensis		265	22	11	NDVI.29
	Aedeomyia catasticta		256	20	12	MNDWI.90
	Culex nigropunctatus		139	20	11	NDVI.33
	Coquillettidia crassipes		109	20	11	pluvio.cum
	Anopheles barbumbrosus	Limit of relative	88	14	5	temp.moy
	Mansonia annulifera	abundance.	79	14	9	perim.eau.tot pop_tot
	Anopheles nitidus	nreconce /abconce	62	14	7	MNDWI.72
	Uranotaenia rampae	presence/absence	54	16	9	perim.eau.tot

		Factors	Species name	Ν	N schools	N missions
Results	lesults		Culex bitaeniorhynchus	695	24	12
		NDVI.29	Anopheles sinensis	265	22	11
		NDVI.33	Culex nigropunctatus	139	20	11
		NDVI.46	Anopheles vagus	1164	24	8
	Environmental data	NDVI.90	Anopheles indefinitus	7894	24	11
		MNDWI.34	Culex bitaeniorhynchus	695	24	12
		MNDWI.54	Anopheles peditaeniatus	1257	24	11
		MNDWI.72	Anopheles nitidus	62	14	7
		MNDWI.90	Aedeomyia catasticta	256	20	12
		NDWIGAO.58	Armigeres subalbatus	527	23	12
Meteorological data			Anopheles barbumbrosus	88	14	5
	temp.moy	Anopheles peditaeniatus	1257	24	11	
	Meteorological data		Culex fuscocephala	660	24	10
		pluvio.cum	Coquillettidia crassipes	109	20	11
			Culex brevipalpis	2329	24	12
Spatial data		norim opu tot	Mansonia annulifera	79	14	9
	Spatial data	perim.eau.tot	Uranotaenia rampae	54	16	9
	Spatial data	perim.flood.area	Culex quinquefasciatus	5693	24	12
		Stream (small river)	Aedes aegypti	1571	24	12
Demographic data		Nh children	Aedes albopictus	551	24	12
		Culex gelidus	1089	24	12	
	Demographic data	Total population	Culex quinquefasciatus	5693	24	12
			Mansonia annulifera	79	14	9
Area	Area	traatmaant	Anopheles indefinitus	7894	24	11
			Anopheles peditaeniatus	1257	24	11

		Factors	Species name	Ν	N schools	N missions
Results		NDVI.2	Culex bitaeniorhynchus	695	24	12
		NDVI.29	Anopheles sinensis	265	22	11
		NDVI.33	Culex nigropunctatus	139	20	11
		NDVI.46	Anopheles vagus	1164	24	8
	Environmental data	NDVI.90	Anopheles indefinitus	7894	24	11
		MNDWI.34	Culex bitaeniorhynchus	695	24	12
		MNDWI.54	Anopheles peditaeniatus	1257	24	11
Importance of		MNDWI.72	Anopheles nitidus	62	14	7
importance of		MNDWI.90	Aedeomyia catasticta	256	20	12
environmental a	na	NDWIGAO.58	Armigeres subalbatus	527	23	12
spatial data			Anopheles barbumbrosus	88	14	5
		temp.moy	Anopheles peditaeniatus	1257	24	11
	Meteorological data		Culex fuscocephala	660	24	10
		pluvio.cum	Coquillettidia crassipes	109	20	11
			Culex brevipalpis	2329	24	12
		perim.eau.tot	Mansonia annulifera	79	14	9
	Spatial data		Uranotaenia rampae	54	16	9
	Spatial data	perim.flood.area	Culex quinquefasciatus	5693	24	12
		Stream (small river)	Aedes aegypti	1571	24	12
		Nh children	Aedes albopictus	551	24	12
	Demographic data		Culex gelidus	1089	24	12
	Demographic uata	Total population	Culex quinquefasciatus	5693	24	12
			Mansonia annulifera	79	14	9
	۸rap	treatment	Anopheles indefinitus	7894	24	11
	Alea		Anopheles peditaeniatus	1257	24	11

- Diversity of environmental profiles with spatial and environmental indicators
- Very good estimation of NDVI and NDWI of Gao
- Mosquito species ↔ environmental data (vegetation and **humidity**)

- Diversity of environmental profiles with spatial and environmental indicators
- Very good estimation of NDVI and NDWI of Gao
- Mosquito species ↔ environmental data (vegetation and **humidity**)

New modeling approach : allows modeling of all captured species Advantage to obtain **environmental data on understudied species**

- Diversity of environmental profiles with spatial and environmental indicators
- Very good estimation of NDVI and NDWI of Gao
- Mosquito species ↔ environmental data (vegetation and **humidity**)

New modeling approach : allows modeling of all captured species Advantage to obtain **environmental data on understudied species**

Importance of **local** field data and importance of **scale** Application to one/several vector species: interest in generalizing models vs. **species/population** effect ? **Reflection on the notion of scale for a mosquito population/species**

- Diversity of environmental profiles with spatial and environmental indicators
- Very good estimation of NDVI and NDWI of Gao
- Mosquito species ↔ environmental data (vegetation and **humidity**)

New modeling approach : allows modeling of all captured species Advantage to obtain **environmental data on understudied species**

Importance of **local** field data and importance of **scale** Application to one/several vector species: interest in generalizing models vs. **species/population** effect ? **Reflection on the notion of scale for a mosquito population/species**

Satellite image acquisition method and potential for high resolution monitoring compared to weather data **Disparity not related to weather but environments Real impact of climate change?** Only indirect ?

